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Abstract
We give a complete description of a simple special class of stochastic models
(birth–death master equations). Each equation of this class can be easily solved
by the method suggested by supersymmetric quantum mechanics. Using
the quadratic Lyapunov functional, one can transform the master equation
to a Schr̈odinger-type equation with a self-adjoint Hamiltonian in imaginary
time. Then the hidden symmetries of the Hamiltonian are investigated. The
whole set of models can be decomposed to four subsets with natural algebraic
classification.

PACS numbers: 05.10.Gg, 03.65.−w, 05.30.−d, 11.30.Pb

1. Introduction

In the present work we deal with birth–death master equations (see, e.g. [1] chapter 7.1)

ṗ(n, t) = W−(n + 1)p(n + 1, t) +W+(n− 1)p(n− 1, t)− [W+(n) +W−(n)]p(n, t) (1.1)

wheren (n = 0,1,2, . . .) specifies the state of the considered system (number of particles,
specimen, level number in a quantum system, etc) In every elementary act of a random process
n changes by one. The probabilityp(n, t) of finding the system at timet in the staten changes
in accordance with equation (1.1), whereW±(n) are the rates of the transitionsn �→ n± 1.

Il’ichov [2] proposed a new method to find solutions to (1.1) resembling the application
of supersymmetric quantum mechanics to the construction of the exactly solvable Schrödinger
equations with so-called shape-invariant potentials [3]1. Let us reproduce the main steps of

1 There are a number of works where the methods of supersymmetric quantum mechanics are applied to kinetic
problems: [4–9].
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the approach from [2]. First of all one should note that equation (1.1) possesses the Lyapunov
functional

H(t) =
∑
n

p−1
S (n)p2(n, t) (1.2)

wherepS(n) is the stationary probability distribution. Introducing the functionalH(t), we
restrict our consideration to distributionsp(n, t) which make the rhs of (1.2) finite. In this case
it is easy to show that

Ḣ (t) � 0 (1.3)

where equality is only realized for the stationary distribution. Note that considering the
quantityp−1/2

S (n)p(n, t) as thenth component of a vectorψ from a real separable Hilbert
spaceH′(0) = span{en; n = 0,1,2, . . .} (with the elementen of orthonormal basis being
associated with thenth state of the considered system), one can presentH(t) as the square
norm of the vector. Being written for the vectorψ(t), equation (1.1) reads

ψ̇(n, t) = −[K̂ψ(t)](n)

≡
√
W−(n)W+(n− 1)ψ(n− 1, t) +

√
W−(n + 1)W+(n)ψ(n + 1, t)

− [
W+(n) +W−(n)

]
ψ(n, t). (1.4)

In such a form, the kinetic operator̂K, which is introduced in (1.4) is explicitly symmetric.
It is convenient to assumêK ∈ B(H′(0)) (in the present work we deal mainly with finite
dimensional spacesH′(0)). The condition (1.3) may be written as

Ḣ (t) = −2(ψ(t) K̂ψ(t)) � 0. (1.5)

This means that the operatorK̂ is positive semi-definite. It is known that under these conditions
an operator̂A ∈ B(H′(0)) can be found, such that

K̂ = Â
†
Â. (1.6)

It follows from (1.5) thatÂ annihilates the ‘vacuum vector’ψ0 = ∑
n

√
pS(n)en so that

Âψ0 = 0.

Of concern to us are the discrete spectrum{λi}i=0,1,... (0 = λ0 < λ1 < · · ·)2 and the set
of corresponding eigenvectors{ψi}i=0,1,... of K̂:

K̂ψi = λiψi .

As is shown in [2] they can easily be obtained if one manages to find the set of objects

{λi(k)}i=0,1,..., {ψi(k)}i=0,1,..., Â(k), H′(k) (k = 0,1,2, . . .)

whereψi(0) ≡ ψi, λi(0) ≡ λi∀i (0 = λ0(k) < λ1(k) < · · ·) ∀k, Â(0) ≡ Â with the
following properties. For anyk the vectorψi(k) belongs to the spaceH′(k)which is convenient
to consider as a subspace of an including spaceH′,

H′ =
∑
k

H′(k),

whereH′(0) ⊃ H′(1) ⊃ . . . . The operatorŝA(k) ∈ B(H′(k),H′(k + 1)) act as follows:

Â(k)ψi(k) =
√
λi(k)ψi−1(k + 1) Â

†
(k)ψi(k + 1) =

√
λi+1(k)ψi+1(k).

2 The real nature ofλi is evident. We also assume that the considered birth–death equations possess no cunning
hidden symmetry which can make the discrete spectrum ofK̂ degenerate. One can find stronger reasons for this in
the theory of orthogonal polynomials (see e.g. [10]) and the fact that the entries of the tridiagonal matrixK̂ meet the
conditions for Favard’s theorem (pointed out by the referee to whom the author is indebted).
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Â(k) andÂ(k + 1) obey the relation

Â(k)Â
†
(k)− Â†

(k + 1)Â(k + 1) = λ1(k)ÎH′(k+1) (1.7)

i.e. λi(k + 1) = λi+1(k) − λ1(k) for i, k = 0,1, . . . . This means that upon the lifting

displacement the spectrum of̂A
†
(k + 1)Â(k + 1) coincides with that ofÂ

†
(k)Â(k) except

for the ‘ground level’. In other words, for allk there should beKerÂ
†
(k) = 0, which

is known as the condition of unbroken supersymmetry. Equation (1.7) allows one to find
Â(k + 1) andλ1(k) starting fromÂ(k). Solving the problem step by step, one is able to define
the eigenvectors

ψi ≡ ψi(0) =
i−1∏
k=0

Â
†
(k)√

λi−k(k)
ψ0(i) (1.8)

and the corresponding eigenvalues

λi ≡ λi(0) =
i−1∑
k=0

λ1(k) (1.9)

for K̂. The normalized solution to the equation

Â(i)ψ0(i) = 0

and the quantitiesλi−k(k) = λi(0)− λk(0) occurs in (1.8).

In [2] the operatorŝA(k) andÂ
†
(k) were used as

Â(k) = âw−( n̂, k)−w+(n̂, k) Â
†
(k) = w−( n̂, k)â† −w+(n̂, k) (1.10)

whereâ and â† are the ordinary lowering and raising bosonic operators with respect to the
basis{en}n=0,1,...,

(en′ , âen) = √
nδn′,n−1 (en′ , â†en) =

√
n + 1δn′,n+1

andw±(n̂, k) are real functions of ˆn = â†â (n̂: en �→ nen) and the step numberk so that

[w+(n,0)]2 = W+(n,0) ≡ W+(n) n[w−(n,0)]2 = W−(n,0) ≡ W−(n).
A calculation of matrix elements shows that introducing the functionsW+(n, k) ≡ [w+(n, k)]2

andW−(n, k) ≡ n[w−(n, k)]2 one can replace equation (1.7) with operators (1.10) by the
following pair of conditions

W−(n + 1, k) +W+(n, k)−W−(n, k + 1)−W+(n, k + 1) = λ1(k)
(1.11)

W−(n, k)W+(n, k) = W−(n, k + 1)W+(n− 1, k + 1).

It is convenient to consider the quantitiesW±(n, k) as transition rates for an effective stochastic
model of thekth step. Equations (1.11) are more convenient than the initial operator equation.
In [2] a solution to (1.11) was found in the case of a model chemical reactor with cross-
inversion of enantiomers. It will be shown below that this model is an element of a set of
contiguous models realizing the most simple but nontrivial solutions to (1.11).

As a natural approach, equations (1.11) suggest a search of an ansatz which makes the
second line in (1.11) trivially fulfilled. Then the first line provides explicit expressions for
W±(n, k) as well asλ1(k). This will be done in the next section. It appears that the cases
λ1(0) > λ1(1), λ1(0) < λ1(1) andλ1(0) = λ1(1) should be considered separately, which is
done in the sections 3, 4 and 5. An algebra of operators which acts in the space of eigenvectors
may be associated with each case. Hence the considered solutions get a natural algebraic
classification.
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2. General relations

Let us try the following ansatz suggested by the model from [2]:

W−(n, k) = W−(n) W+(n, k) = W+(n + k). (2.1)

Provided that this substitution is possible, the condition of unbroken supersymmetry is fulfilled
for every stepk for which the quantitiesW+(n + k)may be considered as transition rates for a
consistent model. By (2.1), the first equation (1.11) gets the form

W−(n + 1)−W+(n + 1 +k) = λ1(k) +W−(n)−W+(n + k)

hence(W−(0) = 0)

W−(n)−W+(n + k) = nλ1(k)−W+(k). (2.2)

If we putk = 0 andk = 1 in the last equation, we get

W+(n) = 1

2
n(n− 1) (λ1(0)− λ1(1)) + nW+(1) + (1 − n)W+(0). (2.3)

By (2.2) taken fork = 0 and (2.3), we also have

W−(n) = 1

2
n(n− 1) (λ1(0)− λ1(1)) + nW−(1)

where

W−(1) = λ1(0) +W+(1)−W+(0). (2.4)

Then (2.2) implies:

λ1(k) = λ1(0)− k (λ1(0)− λ1(1)) . (2.5)

Thus the transition rates which realize the ansatz (2.1) are second-order polynomials of
n. Each model of the considered set is specified by the four parameters—λ1(0), λ1(1) =
λ2(0) − λ1(0), W+(0) andW+(1). However, these parameters should fulfil some relations
which make the model consistent. We consider them in the following sections.

3. The case λ1(0) > λ1(1)

Note that the initial model with the transition ratesW±(n) (the model of step zero) can in its
turn be generated at an intermediate step by another model. Hence it is also worth considering
the negative step numbersk. As will be shown below, this way is very convenient.

Whenλ1(0) > λ1(1) (or, equivalently,λ1(0) > λ2(0)/2) then for sufficiently largek the
rhs of (2.5) becomes negative. This is senseless. Hence in this situationk should be bounded
from above. At the same time there is no lower bound fork. This restriction makes the
finiteness of the set of states inevitable, i.e. there should beN such that

W+(N − 1) > 0 W+(N) = 0. (3.1)

In the opposite case, for anyk > 0 in accordance with (2.1) one would get a consistent model
with positiveλ1(k), which is in conflict with the premise. One can also make sure that there
should be min{k: λ1(k) � 0} � N . By (3.1), we have from (2.3)

1

2
(λ1(0)− λ1(1)) = (N − 1)W+(0)−NW+(1)

N(N − 1)
(3.2)

and

W+(n) = (N − n)
[
n
W+(1)

N − 1
+ (1 − n)W+(0)

N

]
. (3.3)
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We assume implicitly thatN > 1 (only in this case is it reasonable to consider the quantity
λ1(1)). The second null forW+(n) appears for

n0 = (N − 1)W+(0)

(N − 1)W+(0)− NW+(1)
� N. (3.4)

Note that this quantity does not have to be an integer. By (3.4), we get

(N − 1)2W+(0) � N2W+(1)

and because of the positivity of the rhs of (3.2)

(N − 1)W+(0) > NW+(1).

As a result we get the following condition:(
N − 1

N

)2

W+(0) � W+(1) <
N − 1

N
W+(0). (3.5)

Now we are going to get a condition forλ1(0). By the positivity ofW−(1) in (2.4), we have

λ1(0) > W+(0)−W+(1). (3.6)

On the other hand, as has been pointed above,λ1(k) should be positive up tok = N − 1, i.e.

λ1(0) > (N − 1) (λ1(0)− λ1(1)) .

By this inequality and by (3.2), we have

λ1(0) > 2 (W+(0)−W+(1))− 2

N
W+(0). (3.7)

If we assume that condition (3.7) is stronger than (3.6), thenW+(1) < (N − 2)W+(0)/N .
Comparing this expression with the left inequality in (3.5), we come to the contradiction
N(N − 2) > (N − 1)2. Hence (3.6) is the defining condition onλ1(0). After the choice of
W+(0), W+(1), andλ1(0) one can findλ1(1) from (3.2).

We are about to associate an algebra3 with the chain of equations (1.7). The case
λ1(0) > λ1(1) is the simplest since the associated algebra appears to be a Lie algebra. The
idea is to consider the step numberk (k = N,N − 1, . . .) as a quantum number numerating
the basis vectorfk of a Hilbert spaceH′′. Now we introduce the raisingb† and loweringb
operators inH′′,

b†fk = fk+1 b†fN = 0 bfk = fk−1

and build the operatorsJ0, J±, which act inH′ ⊗ H′′ (H′ = ∑N
k=−∞ H′(k)),

J0(ψ ⊗ fk) = (k + α)(ψ ⊗ fk) (∀ψ ∈ H′)
(3.8)

J+ = βb†Â(J0 − α) J− = βÂ
†
(J0 − α)b,

whereα andβ are some constants to be defined. Note that

[J±,J0] = ∓J±. (3.9)

We have

β−2[J+,J−] = Â(J0 − α − 1)Â
†
(J0 − α − 1)− Â†

(J0 − α)Â(J0 − α)
+ Â

†
(J0 − α)Â(J0 − α)PN (3.10)

3 A similar method is used when considering the shape-invariant potentials in supersymmetric quantum mechanics
(see e.g. the work [11]). Unfortunately this approach cannot be directly applied to our problems.
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wherePk is the projector onfk alongH′. When the rhs of (3.l0) acts onH′(k) ⊗ fk we get
the lhs of the chain of equations (1.7) up to the stepN − 1. It is easy to see that for the last
case equation (1.7) reads

Â(N − 1)Â
†
(N − 1) = λ1(N − 1)Î H′(N).

Hence we have

[J+,J−] = β2λ1(J0 − α).
If we put

α = 2λ1(0)− λ1(1)

λ1(1)− λ1(0)
β =

√
2

|λ1(0)− λ1(1)| (3.11)

we get

[J+,J−] = −2J0. (3.12)

By (3.9) and (3.12), we conclude thatJ0 and J± realize the representation ofsu(1,1).
Irreducible representations are realized on the subspacesH(j) ⊂ H (j = N,N − 1, . . .):

H(j) = span{ψj−k(k)⊗ fk; k = j, j − 1, . . .}. (3.13)

Let J,M ≡ ψj−k(k)⊗ fk , whereJ = j + α, M = k + α. Then it is easy to prove that

J+ J,M =
√
(M − J )(J +M + 1) J,M+1

J− J,M =
√
(M − J − 1)(J +M) J,M−1

J0 J,M = M J,M

i.e. the irrepD−(J ) of su(1,1) is realized on the space span{ J,M ; M = J, J − 1, . . .}.

4. The case λ1(0) < λ1(1)

Now the set{k: λ1(k) > 0} is not bounded above, but is bounded below. Sufficiently large
n makeW+(n) from (2.3) negative. HenceH′(0) is finite-dimensional as before and the
expression (3.3) remains valid. By (3.2), we get

W+(1) >
N − 1

N
W+(0). (4.1)

The quantityn0 in (3.4) is negative now. Hence an integerN− � 0 can be found such that
W+(N−) > 0,W+(N− − 1) � 0. N− is the number of the first consistent model which after
−N− steps generate the zero-step-considered model. So, there must beλ1(N−) > 0, or,
equivalently,λ1(0)− n0(λ1(0)− λ1(1)) � 0. This inequality along with (3.2) gives

λ1(0) � 2

N
W+(0). (4.2)

We also have the inequality (3.6). Let us suppose that it is stronger than (4.2). Then
NW+(1) � (N − 2)W+(0), which is in conflict with (4.1). So, (4.2) is the only condition on
λ1(0).

Now we shall be concerned with the algebra which will replace the chain of equations
(1.7). The spaceH′′ is finite-dimensional now:H′′ = span{fk; N− � k � N}. We
introduce again the raising,b†, and lowering,b, operators onH′′ and the operatorsJ0 andJ±
in accordance with (3.8). Instead of (3.10) we have

β−2[J+,J−] = Â(J0 − α − 1)Â
†
(J0 − α − 1)− Â†

(J0 − α)Â(J0 − α)
+ Â

†
(J0 − α)Â(J0 − α)PN − Â(J0 − α − 1)Â

†
(J0 − α − 1)PN− . (4.3)
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One can make sure that the appearance of the last term in the rhs of (4.3) is in accordance
with the form of the chain (1.7), whereN− − 1 � k � N − 1, and the line corresponding to

k = N− − 1 is tautological:−Â†
(N−)Â(N−) = −Â†

(N−)Â(N−). With α andβ from (3.11)
we get

[J+,J−] = 2J0 − I(N−) (4.4)

whereI(N−) is the element of the set{I(k)}Nk=N− ,

I(k) = Pk [J−J+ + 2(k −N−)J0 + β2λ1(N− − 1)IH − (k −N−)(k −N− − 1)IH],

which obeys the relations

J+I(k) = I(k + 1)J+ J+I(N) = 0

J−I(k) = I(k − 1)J− J−I(N−) = 0. (4.5)

By analogy with the previous section we introduce the subspacesH(j) ⊂ H, where the set of
operators{J0,J±, I(k)} acts irreducibly:

H(j) = span{ψj−m(N− +m)⊗ fN−+m; m = 0,1, . . . j }. (4.6)

Herej = −N−,1−N−, . . . , N−N−. Taking the notations J,M = ψj−m(N−+m)⊗fN−+m,
whereJ = j + γ ,M = m + γ , γ = λ1(N− − 1)/(λ1(1)− λ1(0)), we get

J+ J,M =
√
(J −M)(J +M + 1) J,M+1

J− J,M =
√
(J +M)(J −M + 1) J,M−1 J− J,γ = 0

J0 J,M = M J,M.

These relations are akin to the action ofsu(2)-generators. Note that the additional term in the
rhs of (4.4) manifests itself in the values taken byJ andM.

5. The case λ1(0) = λ1(1)

This situation is simple, but demands special consideration. We now have

W+(n) = nW+(1) + (1 − n)W+(0) W−(n) = nW−(1) λ1(k) = λ1(0).

If W+(0) > W+(1), the spaceH′(0) is finite-dimensional as before. There is a condition on
W+(1) in this case,

W+(1) = N − 1

N
W+(0)

and the positivity ofW−(1) gives

λ1(0) >
W+(0)

N
.

The spaceH′′ and operatorsJ± should be taken from section 3. Takingβ = λ
−1/2
1 (0), we get

[J+,J−] = 1.

This is the Heisenberg–Weyl algebra. The subspacesH(j) ⊂ H, whereJ± act irreducibly,
are given by (3.13). Let us introduce the notations (j)m ≡ ψ−m(j + m) ⊗ fj+m, where
m = 0,−1,−2, . . . .We have

J+ 
(j)
m = √−m (j)m+1

(5.1)
J− (j)m = √−m + 1 (j)m−1.
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Another situation takes place whenW+(0) < W+(1). The spaceH′(0) becomes infinite-
dimensional. There are no conditions onW+(1) andλ1(0) except the obvious positivity. The
spaceH′′ is infinite-dimensional too (k is not bounded above). It is easy to prove thatJ±
whenβ = λ

−1/2
1 (0) have the commutator

[J+,J−] = 1 − I(N−) (5.2)

where

I(k) = Pk[J−J+ + (k + 1−N−)IH]

and N− has the same sense as in the previous section. The operatorI(k) obeys the
relations (4.5)(without the numberN). {J±, I(k)} act irreducibly on the spacesH(j) ⊂ H
from (4.6). But now the setj is infinite: j = −N−,1 − N−, . . . . On the set of vectors
 
(j)
m ≡ ψ−m(N− + j +m)⊗ fN−+j+m, wherem = 0,−1,−2, . . . , j , the operatorsJ± act in

accordance with (5.1) except for the casem = −j :

J− (j)−j = 0.

This condition (due to the additional term in the rhs of (5.2)) makes the spacesH(j) finite-
dimensional.

6. Conclusion

We have given a complete description of a special set of stochastic models (birth–death
master equations). These models demonstrate hidden supersymmetry, which makes them
easily solvable. The set is specified by the ansatz (2.1) and can be decomposed to four
subsets depending on the ranges of parameters 1:λ1(0) > λ1(1); 2: λ1(0) < λ1(1);
3: λ1(0) = λ1(1), W+(0) > W+(1) and 4: λ1(0) = λ1(1), W+(0) < W+(1). It turns
out that the supersymmetry chains (1.7) of these four subsets can naturally be associated with
four algebras. The model of cross-inversion of enantiomers from [2] may belong to the first
or second subset (depending on the relations between constant rates). This model has an
additional explicit symmetryW+(n) = W−(N − n). Hence the subsets 1 and 2 are wider and
cannot be reduced to the cross-inversion model only. Note that the well-known model which
describes the relaxation of quantum oscillator (see e.g. [1]) belongs to the fourth subset.

It seems that the ansatz (2.1) is the simplest. There are more complicated ones which will
be described elsewhere.
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